
pyro Documentation
Release 2.2

pyro development team

Oct 19, 2022

PYRO BASICS

1 Introduction to pyro 3

2 Setting up pyro 5

3 Notes on the numerical methods 7

4 Design ideas 9

5 Running 13

6 Working with output 17

7 Adding a problem 19

8 Mesh overview 21

9 Advection solvers 23

10 Compressible hydrodynamics solvers 29

11 Compressible solver comparisons 39

12 Multigrid solvers 55

13 Diffusion 59

14 Incompressible hydrodynamics solver 63

15 Low Mach number hydrodynamics solver 67

16 Shallow water solver 69

17 Particles 73

18 Analysis routines 77

19 Testing 79

20 Contributing and getting help 81

21 Acknowledgments 83

22 History 85

i

23 pyro2 87

24 References 97

25 Indices and tables 99

Bibliography 101

Python Module Index 103

Index 105

ii

pyro Documentation, Release 2.2

http://github.com/python-hydro/pyro2

PYRO BASICS 1

http://github.com/python-hydro/pyro2

pyro Documentation, Release 2.2

2 PYRO BASICS

CHAPTER

ONE

INTRODUCTION TO PYRO

pyro is a simple framework for implementing and playing with hydrodynamics solvers. It is designed to provide a
tutorial for students in computational astrophysics (and hydrodynamics in general) and for easily prototyping new
methods. We introduce simple implementations of some popular methods used in the field, with the code written to be
easily understandable. All simulations use a single grid (no domain decomposition).

Note: pyro is not meant for demanding scientific simulations—given the choice between performance and clarity,
clarity is taken.

pyro builds off of a finite-volume framework for solving PDEs. There are a number of solvers in pyro, allowing for
the solution of hyperbolic (wave), parabolic (diffusion), and elliptic (Poisson) equations. In particular, the following
solvers are developed:

• linear advection

• compressible hydrodynamics

• shallow water hydrodynamics

• multigrid

• implicit thermal diffusion

• incompressible hydrodynamics

• low Mach number atmospheric hydrodynamics

Runtime visualization shows the evolution as the equations are solved.

3

pyro Documentation, Release 2.2

4 Chapter 1. Introduction to pyro

CHAPTER

TWO

SETTING UP PYRO

You can clone pyro from github: http://github.com/python-hydro/pyro2

Note: It is strongly recommended that you use python 3.x. While python 2.x might still work, we do not test pyro
under python 2, so it may break at any time in the future.

The following python packages are required:

• numpy

• matplotlib

• numba

• h5py

• pytest (for unit tests)

The following steps are needed before running pyro:

• add pyro/ to your PYTHONPATH environment variable (note this is only needed if you wish to use pyro as a
python module - this step is not necessary if you only run pyro via the commandline using the pyro.py script).
For the bash shell, this is done as:

export PYTHONPATH="/path/to/pyro/:${PYTHONPATH}"

• define the environment variable PYRO_HOME to point to the pyro2/ directory (only needed for regression testing)

export PYRO_HOME="/path/to/pyro/"

2.1 Quick test

Run the advection solver to quickly test if things are setup correctly:

./pyro.py advection smooth inputs.smooth

You should see a plot window pop up with a smooth pulse advecting diagonally through the periodic domain.

5

http://github.com/python-hydro/pyro2

pyro Documentation, Release 2.2

6 Chapter 2. Setting up pyro

CHAPTER

THREE

NOTES ON THE NUMERICAL METHODS

Detailed discussions and derivations of the numerical methods used in pyro are given in the set of notes Introduction
to Computational Astrophysical Hydrodynamics, part of the Open Astrophysics Bookshelf.

7

http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
https://github.com/Open-Astrophysics-Bookshelf

pyro Documentation, Release 2.2

8 Chapter 3. Notes on the numerical methods

CHAPTER

FOUR

DESIGN IDEAS

pyro is written entirely in python (by default, we expect python 3), with a few low-level routines compiled just-in-time
by numba for performance. The numpy package is used for representing arrays throughout the python code and the
matplotlib library is used for visualization. Finally, pytest is used for unit testing of some components.

All solvers are written for a 2-d grid. This gives a good balance between complexity and speed.

A paper describing the design philosophy of pyro was accepted to Astronomy & Computing [paper link].

4.1 Directory structure

The files for each solver are in their own sub-directory, with additional sub-directories for the mesh and utilities. Each
solver has two sub-directories: problems/ and tests/. These store the different problem setups for the solver and
reference output for testing.

Your PYTHONPATH environment variable should be set to include the top-level pyro2/ directory.

The overall structure is:

• pyro2/: This is the top-level directory. The main driver, pyro.py, is here, and all pyro simulations should be
run from this directory.

• advection/: The linear advection equation solver using the CTU method. All advection-specific routines live
here.

– problems/: The problem setups for the advection solver.

– tests/: Reference advection output files for comparison and regression testing.

• advection_fv4/: The fourth-order accurate finite-volume advection solver that uses RK4 time integration.

– problems/: The problem setups for the fourth-order advection solver.

– tests/: Reference advection output files for comparison and regression testing.

• advection_nonuniform/: The solver for advection with a non-uniform velocity field.

– problems/: The problem setups for the non-uniform advection solver.

– tests/: Reference advection output files for comparison and regression testing.

• advection_rk/: The linear advection equation solver using the method-of-lines approach.

– problems/: This is a symbolic link to the advection/problems/ directory.

– tests/: Reference advection output files for comparison and regression testing.

• advection_weno/: The method-of-lines WENO solver for linear advection.

– problems/: This is a symbolic link to the advection/problems/ directory.

9

http://adsabs.harvard.edu/abs/2013arXiv1306.6883Z

pyro Documentation, Release 2.2

• analysis/: Various analysis scripts for processing pyro output files.

• compressible/: The fourth-order accurate finite-volume compressible hydro solver that uses RK4 time inte-
gration. This is built from the method of McCourquodale and Colella (2011).

– problems/: The problem setups for the fourth-order compressible hydrodynamics solver.

– tests/: Reference compressible hydro output for regression testing.

• compressible_fv4/: The compressible hydrodynamics solver using the CTU method. All source files specific
to this solver live here.

– problems/: This is a symbolic link to the compressible/problems/ directory.

– tests/: Reference compressible hydro output for regression testing.

• compressible_rk/: The compressible hydrodynamics solver using method of lines integration.

– problems/: This is a symbolic link to the compressible/problems/ directory.

– tests/: Reference compressible hydro output for regression testing.

• compressible_sdc/: The fourth-order compressible solver, using spectral-deferred correction (SDC) for the
time integration.

– problems/: This is a symbolic link to the compressible/problems/ directory.

– tests/: Reference compressible hydro output for regression testing.

• diffusion/: The implicit (thermal) diffusion solver. All diffusion-specific routines live here.

– problems/: The problem setups for the diffusion solver.

– tests/: Reference diffusion output for regression testing.

• incompressible/: The incompressible hydrodynamics solver. All incompressible-specific routines live here.

– problems/: The problem setups for the incompressible solver.

– tests/: Reference incompressible hydro output for regression testing.

• lm_atm/: The low Mach number hydrodynamics solver for atmospherical flows. All low-Mach-specific files
live here.

– problems/: The problem setups for the low Mach number solver.

– tests/: Reference low Mach hydro output for regression testing.

• mesh/: The main classes that deal with 2-d cell-centered grids and the data that lives on them. All the solvers
use these classes to represent their discretized data.

• multigrid/: The multigrid solver for cell-centered data. This solver is used on its own to illustrate how multi-
grid works, and directly by the diffusion and incompressible solvers.

– problems/: The problem setups for when the multigrid solver is used in a stand-alone fashion.

– tests/: Reference multigrid solver solutions (from when the multigrid solver is used stand-alone) for
regression testing.

• particles/: The solver for Lagrangian tracer particles.

– tests/: Particle solver testing.

• swe/: The shallow water solver.

– problems/: The problem setups for the shallow water solver.

– tests/: Reference shallow water output for regression testing.

10 Chapter 4. Design ideas

pyro Documentation, Release 2.2

• util/: Various service modules used by the pyro routines, including runtime parameters, I/O, profiling, and
pretty output modes.

4.2 Numba

numba is used to speed up some critical portions of the code. Numba is a just-in-time compiler for python. When a
call is first made to a function decorated with Numba’s @njit decorator, it is compiled to machine code ‘just-in-time’
for it to be executed. Once compiled, it can then run at (near-to) native machine code speed.

We also use Numba’s cache=True option, which means that once the code is compiled, Numba will write the code into
a file-based cache. The next time you run the same bit of code, Numba will use the saved version rather than compiling
the code again, saving some compilation time at the start of the simulation.

Note: Because we have chosen to cache the compiled code, Numba will save it in the __pycache__ directories. If
you change the code, a new version will be compiled and saved, but the old version will not be deleted. Over time,
you may end up with many unneeded files saved in the __pycache__ directories. To clean up these files, you can run
./mk.sh clean in the main pyro2 directory.

4.3 Main driver

All the solvers use the same driver, the main pyro.py script. The flowchart for the driver is:

• parse runtime parameters

• setup the grid (initialize() function from the solver)

– initialize the data for the desired problem (init_data() function from the problem)

• do any necessary pre-evolution initialization (preevolve() function from the solver)

• evolve while t < tmax and n < max_steps

– fill boundary conditions (fill_BC_all() method of the CellCenterData2d class)

– get the timestep (compute_timestep() calls the solver’s method_compute_timestep() function from
the solver)

– evolve for a single timestep (evolve() function from the solver)

– t = t + dt

– output (write() method of the CellCenterData2d class)

– visualization (dovis() function from the solver)

• call the solver’s finalize() function to output any useful information at the end

This format is flexible enough for the advection, compressible, diffusion, and incompressible evolution solver. Each
solver provides a Simulation class that provides the following methods (note: inheritance is used, so many of these
methods come from the base NullSimulation class):

• compute_timestep: return the timestep based on the solver’s specific needs (through
method_compute_timestep()) and timestepping parameters in the driver

• dovis: performs visualization of the current solution

• evolve: advances the system of equations through a single timestep

4.2. Numba 11

pyro Documentation, Release 2.2

• finalize: any final clean-ups, printing of analysis hints.

• finished: return True if we’ve met the stopping criteria for a simulation

• initialize: sets up the grid and solution variables

• method_compute_timestep: returns the timestep for evolving the system

• preevolve: does any initialization to the fluid state that is necessary before the main evolution. Not every solver
will need something here.

• read_extras: read in any solver-specific data from a stored output file

• write: write the state of the simulation to an HDF5 file

• write_extras: any solver-specific writing

Each problem setup needs only provide an init_data() function that fills the data in the patch object.

12 Chapter 4. Design ideas

CHAPTER

FIVE

RUNNING

Pyro can be run in two ways: either from the commandline, using the pyro.py script and passing in the solver, problem
and inputs as arguments, or by using the Pyro class.

5.1 Commandline

The pyro.py script takes 3 arguments: the solver name, the problem setup to run with that solver (this is defined in
the solver’s problems/ sub-directory), and the inputs file (again, usually from the solver’s problems/ directory).

For example, to run the Sedov problem with the compressible solver we would do:

./pyro.py compressible sedov inputs.sedov

This knows to look for inputs.sedov in compressible/problems/ (alternately, you can specify the full path for
the inputs file).

To run the smooth Gaussian advection problem with the advection solver, we would do:

./pyro.py advection smooth inputs.smooth

Any runtime parameter can also be specified on the command line, after the inputs file. For example, to disable runtime
visualization for the above run, we could do:

./pyro.py advection smooth inputs.smooth vis.dovis=0

Note: Quite often, the slowest part of the runtime is the visualization, so disabling vis as shown above can dramatically
speed up the execution. You can always plot the results after the fact using the plot.py script, as discussed in Analysis
routines.

5.2 Pyro class

Alternatively, pyro can be run using the Pyro class. This provides an interface that enables simulations to be set up
and run in a Jupyter notebook – see examples/examples.ipynb for an example notebook. A simulation can be set
up and run by carrying out the following steps:

• create a Pyro object, initializing it with a specific solver

• initialize the problem, passing in runtime parameters and inputs

• run the simulation

13

pyro Documentation, Release 2.2

For example, if we wished to use the compressible solver to run the Kelvin-Helmholtz problem kh, we would do the
following:

from pyro import Pyro
pyro = Pyro("compressible")
pyro.initialize_problem(problem_name="kh",

inputs_file="inputs.kh")
pyro.run_sim()

Instead of using an inputs file to define the problem parameters, we can define a dictionary of parameters and pass them
into the initialize_problem function using the keyword argument inputs_dict. If an inputs file is also passed
into the function, the parameters in the dictionary will override any parameters in the file. For example, if we wished
to turn off visualization for the previous example, we would do:

parameters = {"vis.dovis":0}
pyro.initialize_problem(problem_name="kh",

inputs_file="inputs.kh",
inputs_dict=parameters)

It’s possible to evolve the simulation forward timestep by timestep manually using the single_step function (rather
than allowing run_sim to do this for us). To evolve our example simulation forward by a single step, we’d run

pyro.single_step()

This will fill the boundary conditions, compute the timestep dt, evolve a single timestep and do output/visualization
(if required).

5.3 Runtime options

The behavior of the main driver, the solver, and the problem setup can be controlled by runtime parameters specified in
the inputs file (or via the command line or passed into the initialize_problem function). Runtime parameters are
grouped into sections, with the heading of that section enclosed in [..]. The list of parameters are stored in three
places:

• the pyro/_defaults file

• the solver’s _defaults file

• problem’s _defaults file (named _problem-name.defaults in the solver’s problem/ sub-directory).

These three files are parsed at runtime to define the list of valid parameters. The inputs file is read next and used to
override the default value of any of these previously defined parameters. Additionally, any parameter can be specified
at the end of the commandline, and these will be used to override the defaults. The collection of runtime parameters is
stored in a RuntimeParameters object.

The runparams.pymodule in util/ controls access to the runtime parameters. You can setup the runtime parameters,
parse an inputs file, and access the value of a parameter (hydro.cfl in this example) as:

rp = RuntimeParameters()
rp.load_params("inputs.test")
...
cfl = rp.get_param("hydro.cfl")

When pyro is run, the file inputs.auto is output containing the full list of runtime parameters, their value for the
simulation, and the comment that was associated with them from the _defaults files. This is a useful way to see what
parameters are in play for a given simulation.

14 Chapter 5. Running

pyro Documentation, Release 2.2

All solvers use the following parameters:

• section: [driver]

option value description
tmax 1.0 maximum simulation time to evolve
max_steps 10000 maximum number of steps to take
fix_dt -1.0
init_tstep_factor 0.01 first timestep = init_tstep_factor * CFL timestep
max_dt_change 2.0 max amount the timestep can change between steps
verbose 1.0 verbosity

• section: [io]

option value description
basename pyro_ basename for output files
dt_out 0.1 simulation time between writing output files
n_out 10000 number of timesteps between writing output files
do_io 1 do we output at all?

• section: [mesh]

option value description
xmin 0.0 domain minumum x-coordinate
xmax 1.0 domain maximum x-coordinate
ymin 0.0 domain minimum y-coordinate
ymax 1.0 domain maximum y-coordinate
xlboundary reflect minimum x BC (‘reflect’, ‘outflow’, or ‘periodic’)
xrboundary reflect maximum x BC (‘reflect’, ‘outflow’, or ‘periodic’)
ylboundary reflect minimum y BC (‘reflect’, ‘outflow’, or ‘periodic’)
yrboundary reflect maximum y BC (‘reflect’, ‘outflow’, or ‘periodic’)
nx 25 number of zones in the x-direction
ny 25 number of zones in the y-direction

• section: [particles]

option value description
do_particles 0 include particles? (1=yes, 0=no)
n_particles 100 number of particles
particle_generator random how do we generate particles? (random, grid)

• section: [vis]

option value description
dovis 1 runtime visualization? (1=yes, 0=no)
store_images 0 store vis images to files (1=yes, 0=no)

5.3. Runtime options 15

pyro Documentation, Release 2.2

16 Chapter 5. Running

CHAPTER

SIX

WORKING WITH OUTPUT

6.1 Utilities

Several simply utilities exist to operate on output files

• compare.py: this script takes two plot files and compares them zone-by-zone and reports the differences. This
is useful for testing, to see if code changes affect the solution. Many problems have stored benchmarks in their
solver’s tests directory. For example, to compare the current results for the incompressible shear problem to the
stored benchmark, we would do:

./compare.py shear_128_0216.pyro incompressible/tests/shear_128_0216.pyro

Differences on the order of machine precision may arise because of optimizations and compiler differences across
platforms. Students should familiarize themselves with the details of how computers store numbers (floating
point). An excellent read is What every computer scientist should know about floating-point arithmetic by D.
Goldberg.

• plot.py: this script uses the solver’s dovis() routine to plot an output file. For example, to plot the data in the
file shear_128_0216.pyro from the incompressible shear problem, you would do:

./plot.py -o image.png shear_128_0216.pyro

where the -o option allows you to specify the output file name.

6.2 Reading and plotting manually

pyro output data can be read using the util.io_pyro.read method. The following sequence (done in a python
session) reads in stored data (from the compressible Sedov problem) and plots data falling on a line in the x direction
through the y-center of the domain (note: this will include the ghost cells).

import matplotlib.pyplot as plt
import util_pyro.io as io
sim = io.read("sedov_unsplit_0000.h5")
dens = sim.cc_data.get_var("density")
plt.plot(dens.g.x, dens[:,dens.g.ny//2])
plt.show()

17

pyro Documentation, Release 2.2

Note: this includes the ghost cells, by default, seen as the small regions of zeros on the left and right.

18 Chapter 6. Working with output

CHAPTER

SEVEN

ADDING A PROBLEM

The easiest way to add a problem is to copy an existing problem setup in the solver you wish to use (in its problems/
sub-directory). Three different files will need to be copied (created):

• problem.py: this is the main initialization routine. The function init_data() is called at runtime
by the Simulation object’s initialize() method. Two arguments are passed in, the simulation’s
CellCenterData2d object and the RuntimeParameters object. The job of init_data() is to fill all of
the variables defined in the CellCenterData2d object.

• _problem.defaults: this contains the runtime parameters and their defaults for your problem. They should be
placed in a block with the heading [problem] (where problem is your problem’s name). Anything listed here
will be available through the RuntimeParameters object at runtime.

• inputs.problem: this is the inputs file that is used at runtime to set the parameters for your problem. Any of
the general parameters (like the grid size, boundary conditions, etc.) as well as the problem-specific parameters
can be set here. Once the problem is defined, you need to add the problem name to the __all__ list in the
__init__.py file in the problems/ sub-directory. This lets python know about the problem.

19

pyro Documentation, Release 2.2

20 Chapter 7. Adding a problem

CHAPTER

EIGHT

MESH OVERVIEW

All solvers are based on a finite-volume/cell-centered discretization. The basic theory of such methods is discussed in
Notes on the numerical methods.

Note: The core data structure that holds data on the grid is CellCenterData2d. This does not distinguish between
cell-centered data and cell-averages. This is fine for methods that are second-order accurate, but for higher-order
methods, the FV2d class has methods for converting between the two data centerings.

8.1 mesh.patch implementation and use

We import the basic mesh functionality as:

import mesh.patch as patch
import mesh.fv as fv
import mesh.boundary as bnd
import mesh.array_indexer as ai

There are several main objects in the patch class that we interact with:

• patch.Grid2d: this is the main grid object. It is basically a container that holds the number of zones in each
coordinate direction, the domain extrema, and the coordinates of the zones themselves (both at the edges and
center).

• patch.CellCenterData2d: this is the main data object—it holds cell-centered data on a grid. To build a
patch.CellCenterData2d object you need to pass in the patch.Grid2d object that defines the mesh. The
patch.CellCenterData2d object then allocates storage for the unknowns that live on the grid. This class also
provides methods to fill boundary conditions, retrieve the data in different fashions, and read and write the object
from/to disk.

• fv.FV2d: this is a special class derived from patch.CellCenterData2d that implements some extra functions
needed to convert between cell-center data and averages with fourth-order accuracy.

• bnd.BC: This is simply a container that holds the names of the boundary conditions on each edge of the domain.

• ai.ArrayIndexer: This is a class that subclasses the NumPy ndarray and makes the data in the array know
about the details of the grid it is defined on. In particular, it knows which cells are valid and which are the ghost
cells, and it has methods to do the 𝑎𝑖+1,𝑗 operations that are common in difference methods.

• integration.RKIntegrator: This class implements Runge-Kutta integration in time by managing a hierarchy
of grids at different time-levels. A Butcher tableau provides the weights and evaluation points for the different
stages that make up the integration.

The procedure for setting up a grid and the data that lives on it is as follows:

21

pyro Documentation, Release 2.2

myg = patch.Grid2d(16, 32, xmax=1.0, ymax=2.0)

This creates the 2-d grid object myg with 16 zones in the x-direction and 32 zones in the y-direction. It also specifies
the physical coordinate of the rightmost edge in x and y.

mydata = patch.CellCenterData2d(myg)

bc = bnd.BC(xlb="periodic", xrb="periodic", ylb="reflect-even", yrb="outflow")

mydata.register_var("a", bc)
mydata.create()

This creates the cell-centered data object, mydata, that lives on the grid we just built above. Next we create a boundary
condition object, specifying the type of boundary conditions for each edge of the domain, and finally use this to register
a variable, a that lives on the grid. Once we call the create()method, the storage for the variables is allocated and we
can no longer add variables to the grid. Note that each variable needs to specify a BC—this allows us to do different
actions for each variable (for example, some may do even reflection while others may do odd reflection).

8.2 Jupyter notebook

A Jupyter notebook that illustrates some of the basics of working with the grid is provided as mesh-examples.ipynb.
This will demonstrate, for example, how to use the ArrayIndexer methods to construct differences.

8.3 Tests

The actual filling of the boundary conditions is done by the fill_BCmethod. The script bc_demo.py tests the various
types of boundary conditions by initializing a small grid with sequential data, filling the BCs, and printing out the
results.

22 Chapter 8. Mesh overview

https://github.com/python-hydro/pyro2/blob/main/mesh/mesh-examples.ipynb

CHAPTER

NINE

ADVECTION SOLVERS

The linear advection equation:

𝑎𝑡 + 𝑢𝑎𝑥 + 𝑣𝑎𝑦 = 0

provides a good basis for understanding the methods used for compressible hydrodynamics. Chapter 4 of the notes
summarizes the numerical methods for advection that we implement in pyro.

pyro has several solvers for linear advection, which solve the equation with different spatial and temporal intergration
schemes.

9.1 advection solver

advection implements the directionally unsplit corner transport upwind algorithm [Colella90] with piecewise linear
reconstruction. This is an overall second-order accurate method, with timesteps restricted by

∆𝑡 < min

{︂
∆𝑥

|𝑢|
,

∆𝑦

|𝑣|

}︂
The parameters for this solver are:

• section: [advection]

option value description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)

• section: [driver]

option value description
cfl 0.8 advective CFL number

• section: [particles]

option value description
do_particles 0
particle_generator grid

23

pyro Documentation, Release 2.2

9.2 advection_fv4 solver

advection_fv4 uses a fourth-order accurate finite-volume method with RK4 time integration, following the ideas
in [McCorquodaleColella11]. It can be thought of as a method-of-lines integration, and as such has a slightly more
restrictive timestep:

∆𝑡 .

[︂
|𝑢|
∆𝑥

+
|𝑣|
∆𝑦

]︂−1

The main complexity comes from needing to average the flux over the faces of the zones to achieve 4th order accuracy
spatially.

The parameters for this solver are:

• section: [advection]

option value description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 1 limiter (0 = none, 1 = ppm)
temporal_method RK4 integration method (see mesh/integrators.py)

• section: [driver]

option value description
cfl 0.8 advective CFL number

9.3 advection_nonuniform solver

advection_nonuniform models advection with a non-uniform velocity field. This is used to implement the slotted
disk problem from [Zal79]. The basic method is similar to the algorithm used by the main advection solver.

The paramters for this solver are:

• section: [advection]

option value description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)

• section: [driver]

option value description
cfl 0.8 advective CFL number

• section: [particles]

option value description
do_particles 0
particle_generator grid

24 Chapter 9. Advection solvers

pyro Documentation, Release 2.2

9.4 advection_rk solver

advection_rk uses a method of lines time-integration approach with piecewise linear spatial reconstruction for linear
advection. This is overall second-order accurate, so it represents a simpler algorithm than the advection_fv4method
(in particular, we can treat cell-centers and cell-averages as the same, to second order).

The parameter for this solver are:

• section: [advection]

option value description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method RK4 integration method (see mesh/integrators/.py)

• section: [driver]

option value description
cfl 0.8 advective CFL number

9.5 advection_weno solver

advection_weno uses a WENO reconstruction and method of lines time-integration

The main parameters that affect this solver are:

• section: [advection]

option value description
u 1.0 advective velocity in x-direction
v 1.0 advective velocity in y-direction
limiter 0 Unused here, but needed to inherit from advection base class
weno_order 3 k in WENO scheme
temporal_method RK4 integration method (see mesh/integrators/.py)

• section: [driver]

option value description
cfl 0.5 advective CFL number

9.4. advection_rk solver 25

pyro Documentation, Release 2.2

9.6 General ideas

The main use for the advection solver is to understand how Godunov techniques work for hyperbolic problems. These
same ideas will be used in the compressible and incompressible solvers. This video shows graphically how the basic
advection algorithm works, consisting of reconstruction, evolution, and averaging steps:

9.7 Examples

9.7.1 smooth

The smooth problem initializes a Gaussian profile and advects it with 𝑢 = 𝑣 = 1 through periodic boundaries for a
period. The result is that the final state should be identical to the initial state—any disagreement is our numerical error.
This is run as:

./pyro.py advection smooth inputs.smooth

By varying the resolution and comparing to the analytic solution, we can measure the convergence rate of the method.
The smooth_error.py script in analysis/ will compare an output file to the analytic solution for this problem.

26 Chapter 9. Advection solvers

pyro Documentation, Release 2.2

The points above are the L2-norm of the absolute error for the smooth advection problem after 1 period with CFL=0.8,
for both the advection and advection_fv4 solvers. The dashed and dotted lines show ideal scaling. We see that we
achieve nearly 2nd order convergence for the advection solver and 4th order convergence with the advection_fv4
solver. Departures from perfect scaling are likely due to the use of limiters.

9.7.2 tophat

The tophat problem initializes a circle in the center of the domain with value 1, and 0 outside. This has very steep
jumps, and the limiters will kick in strongly here.

9.7. Examples 27

pyro Documentation, Release 2.2

9.8 Exercises

The best way to learn these methods is to play with them yourself. The exercises below are suggestions for explorations
and features to add to the advection solver.

9.8.1 Explorations

• Test the convergence of the solver for a variety of initial conditions (tophat hat will differ from the smooth case
because of limiting). Test with limiting on and off, and also test with the slopes set to 0 (this will reduce it down
to a piecewise constant reconstruction method).

• Run without any limiting and look for oscillations and under and overshoots (does the advected quantity go
negative in the tophat problem?)

9.8.2 Extensions

• Implement a dimensionally split version of the advection algorithm. How does the solution compare between
the unsplit and split versions? Look at the amount of overshoot and undershoot, for example.

• Research the inviscid Burger’s equation—this looks like the advection equation, but now the quantity being
advected is the velocity itself, so this is a non-linear equation. It is very straightforward to modify this solver
to solve Burger’s equation (the main things that need to change are the Riemann solver and the fluxes, and the
computation of the timestep).

The neat thing about Burger’s equation is that it admits shocks and rarefactions, so some very interesting flow
problems can be setup.

28 Chapter 9. Advection solvers

CHAPTER

TEN

COMPRESSIBLE HYDRODYNAMICS SOLVERS

The Euler equations of compressible hydrodynamics take the form:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑈) = 0

𝜕(𝜌𝑈)

𝜕𝑡
+ ∇ · (𝜌𝑈𝑈) + ∇𝑝 = 𝜌𝑔

𝜕(𝜌𝐸)

𝜕𝑡
+ ∇ · [(𝜌𝐸 + 𝑝)𝑈] = 𝜌𝑈 · 𝑔

with 𝜌𝐸 = 𝜌𝑒 + 1
2𝜌|𝑈 |2 and 𝑝 = 𝑝(𝜌, 𝑒). Note these do not include any dissipation terms, since they are usually

negligible in astrophysics.

pyro has several compressible solvers to solve this equation set. The implementations here have flattening at shocks,
artificial viscosity, a simple gamma-law equation of state, and (in some cases) a choice of Riemann solvers. Optional
constant gravity in the vertical direction is allowed.

Note: All the compressible solvers share the same problems/ directory, which lives in compressible/problems/.
For the other compressible solvers, we simply use a symbolic-link to this directory in the solver’s directory.

10.1 compressible solver

compressible is based on a directionally unsplit (the corner transport upwind algorithm) piecewise linear method for
the Euler equations, following [Colella90]. This is overall second-order accurate.

The parameters for this solver are:

• section: [compressible]

option value description
use_flattening 1 apply flattening at shocks (1)
z0 0.75 flattening z0 parameter
z1 0.85 flattening z1 parameter
delta 0.33 flattening delta parameter
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
grav 0.0 gravitational acceleration (in y-direction)
riemann HLLC HLLC or CGF

• section: [driver]

29

pyro Documentation, Release 2.2

option value description
cfl 0.8

• section: [eos]

option value description
gamma 1.4 pres = rho ener (gamma - 1)

• section: [particles]

option value description
do_particles 0
particle_generator grid

10.2 compressible_rk solver

compressible_rk uses a method of lines time-integration approach with piecewise linear spatial reconstruction for
the Euler equations. This is overall second-order accurate.

The parameters for this solver are:

• section: [compressible]

option value description
use_flattening 1 apply flattening at shocks (1)
z0 0.75 flattening z0 parameter
z1 0.85 flattening z1 parameter
delta 0.33 flattening delta parameter
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method RK4 integration method (see mesh/integration.py)
grav 0.0 gravitational acceleration (in y-direction)
riemann HLLC HLLC or CGF
well_balanced 0 use a well-balanced scheme to keep the model in hydrostatic equilibrium

• section: [driver]

option value description
cfl 0.8

• section: [eos]

option value description
gamma 1.4 pres = rho ener (gamma - 1)

30 Chapter 10. Compressible hydrodynamics solvers

pyro Documentation, Release 2.2

10.3 compressible_fv4 solver

compressible_fv4 uses a 4th order accurate method with RK4 time integration, following [McCorquodaleColella11].

The parameter for this solver are:

• section: [compressible]

option value description
use_flattening 1 apply flattening at shocks (1)
z0 0.75 flattening z0 parameter
z1 0.85 flattening z1 parameter
delta 0.33 flattening delta parameter
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method RK4 integration method (see mesh/integration.py)
grav 0.0 gravitational acceleration (in y-direction)

• section: [driver]

option value description
cfl 0.8

• section: [eos]

option value description
gamma 1.4 pres = rho ener (gamma - 1)

10.4 compressible_sdc solver

compressible_sdc uses a 4th order accurate method with spectral-deferred correction (SDC) for the time integration.
This shares much in common with the compressible_fv4 solver, aside from how the time-integration is handled.

The parameters for this solver are:

• section: [compressible]

option value description
use_flattening 1 apply flattening at shocks (1)
z0 0.75 flattening z0 parameter
z1 0.85 flattening z1 parameter
delta 0.33 flattening delta parameter
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
temporal_method RK4 integration method (see mesh/integration.py)
grav 0.0 gravitational acceleration (in y-direction)

• section: [driver]

option value description
cfl 0.8

10.3. compressible_fv4 solver 31

pyro Documentation, Release 2.2

• section: [eos]

option value description
gamma 1.4 pres = rho ener (gamma - 1)

10.5 Example problems

Note: The 4th-order accurate solver (compressible_fv4) requires that the initialization create cell-averages accurate
to 4th-order. To allow for all the solvers to use the same problem setups, we assume that the initialization routines
initialize cell-centers (which is fine for 2nd-order accuracy), and the preevolve() method will convert these to cell-
averages automatically after initialization.

10.5.1 Sod

The Sod problem is a standard hydrodynamics problem. It is a one-dimensional shock tube (two states separated by an
interface), that exhibits all three hydrodynamic waves: a shock, contact, and rarefaction. Furthermore, there are exact
solutions for a gamma-law equation of state, so we can check our solution against these exact solutions. See Toro’s
book for details on this problem and the exact Riemann solver.

Because it is one-dimensional, we run it in narrow domains in the x- or y-directions. It can be run as:

./pyro.py compressible sod inputs.sod.x

./pyro.py compressible sod inputs.sod.y

A simple script, sod_compare.py in analysis/ will read a pyro output file and plot the solution over the exact Sod
solution. Below we see the result for a Sod run with 128 points in the x-direction, gamma = 1.4, and run until t = 0.2 s.

32 Chapter 10. Compressible hydrodynamics solvers

pyro Documentation, Release 2.2

We see excellent agreement for all quantities. The shock wave is very steep, as expected. The contact wave is smeared
out over ~5 zones—this is discussed in the notes above, and can be improved in the PPM method with contact steep-
ening.

10.5. Example problems 33

pyro Documentation, Release 2.2

10.5.2 Sedov

The Sedov blast wave problem is another standard test with an analytic solution (Sedov 1959). A lot of energy is point
into a point in a uniform medium and a blast wave propagates outward. The Sedov problem is run as:

./pyro.py compressible sedov inputs.sedov

The video below shows the output from a 128 x 128 grid with the energy put in a radius of 0.0125 surrounding the
center of the domain. A gamma-law EOS with gamma = 1.4 is used, and we run until 0.1

We see some grid effects because it is hard to initialize a small circular explosion on a rectangular grid. To compare
to the analytic solution, we need to radially bin the data. Since this is a 2-d explosion, the physical geometry it repre-
sents is a cylindrical blast wave, so we compare to Sedov’s cylindrical solution. The radial binning is done with the
sedov_compare.py script in analysis/

34 Chapter 10. Compressible hydrodynamics solvers

pyro Documentation, Release 2.2

This shows good agreement with the analytic solution.

10.5. Example problems 35

pyro Documentation, Release 2.2

10.5.3 quad

The quad problem sets up different states in four regions of the domain and watches the complex interfaces that de-
velop as shocks interact. This problem has appeared in several places (and a detailed investigation is online by Pawel
Artymowicz). It is run as:

./pyro.py compressible quad inputs.quad

36 Chapter 10. Compressible hydrodynamics solvers

http://planets.utsc.utoronto.ca/~pawel/Riemann.hydro.html

pyro Documentation, Release 2.2

10.5.4 rt

The Rayleigh-Taylor problem puts a dense fluid over a lighter one and perturbs the interface with a sinusoidal velocity.
Hydrostatic boundary conditions are used to ensure any initial pressure waves can escape the domain. It is run as:

./pyro.py compressible rt inputs.rt

10.5.5 bubble

The bubble problem initializes a hot spot in a stratified domain and watches it buoyantly rise and roll up. This is run
as:

./pyro.py compressible bubble inputs.bubble

The shock at the top of the domain is because we cut off the stratified atmosphere at some low density and the resulting
material above that rains down on our atmosphere. Also note the acoustic signal propagating outward from the bubble
(visible in the U and e panels).

10.6 Exercises

10.6.1 Explorations

• Measure the growth rate of the Rayleigh-Taylor instability for different wavenumbers.

• There are multiple Riemann solvers in the compressible algorithm. Run the same problem with the different
Riemann solvers and look at the differences. Toro’s text is a good book to help understand what is happening.

• Run the problems with and without limiting—do you notice any overshoots?

10.6. Exercises 37

pyro Documentation, Release 2.2

10.6.2 Extensions

• Limit on the characteristic variables instead of the primitive variables. What changes do you see? (the notes
show how to implement this change.)

• Add passively advected species to the solver.

• Add an external heating term to the equations.

• Add 2-d axisymmetric coordinates (r-z) to the solver. This is discussed in the notes. Run the Sedov problem with
the explosion on the symmetric axis—now the solution will behave like the spherical sedov explosion instead of
the cylindrical explosion.

• Swap the piecewise linear reconstruction for piecewise parabolic (PPM). The notes and the Miller and Colella
paper provide a good basis for this. Research the Roe Riemann solver and implement it in pyro.

10.7 Going further

The compressible algorithm presented here is essentially the single-grid hydrodynamics algorithm used in the Cas-
tro code—an adaptive mesh radiation hydrodynamics code developed at CCSE/LBNL. Castro is freely available for
download.

A simple, pure Fortran, 1-d compressible hydrodynamics code that does piecewise constant, linear, or parabolic (PPM)
reconstruction is also available. See the hydro1d page.

38 Chapter 10. Compressible hydrodynamics solvers

https://amrex-astro.github.io/Castro/
https://amrex-astro.github.io/Castro/
https://github.com/AMReX-Astro/Castro
https://github.com/AMReX-Astro/Castro
https://zingale.github.io/hydro1d/

CHAPTER

ELEVEN

COMPRESSIBLE SOLVER COMPARISONS

We run various problems run with the different compressible solvers in pyro (standard Riemann, Runge-Kutta, fourth
order).

11.1 Kelvin-Helmholtz

The McNally Kelvin-Helmholtz problem sets up a heavier fluid moving in the negative x-direction sandwiched between
regions of lighter fluid moving in the positive x-direction.

The image below shows the KH problem initialized with McNally’s test. It ran on a 128 x 128 grid, with gamma = 1.7,
and ran until t = 2.0. This is run with:

./pyro.py compressible kh inputs.kh kh.vbulk=0

./pyro.py compressible_rk kh inputs.kh kh.vbulk=0

./pyro.py compressible_fv4 kh inputs.kh kh.vbulk=0

./pyro.py compressible_sdc kh inputs.kh kh.vbulk=0

39

pyro Documentation, Release 2.2

We vary the velocity in the positive y-direction (vbulk) to see how effective the solvers are at preserving the initial
shape.

11.2 Sedov

The Sedov problem ran on a 128 x 128 grid, with gamma = 1.4, and until t = 0.1, which can be run as:

./pyro.py compressible sedov inputs.sedov

./pyro.py compressible_rk sedov inputs.sedov

./pyro.py compressible_fv4 sedov inputs.sedov

./pyro.py compressible_sdc sedov inputs.sedov

40 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.2. Sedov 41

pyro Documentation, Release 2.2

42 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.2. Sedov 43

pyro Documentation, Release 2.2

11.3 Quad

The quad problem ran on a 256 x 256 grid until t = 0.8, which can be run as:

./pyro.py compressible quad inputs.quad

./pyro.py compressible_rk quad inputs.quad

./pyro.py compressible_fv4 quad inputs.quad

./pyro.py compressible_sdc quad inputs.quad

44 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.3. Quad 45

pyro Documentation, Release 2.2

46 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.3. Quad 47

pyro Documentation, Release 2.2

11.4 Bubble

The bubble problem ran on a 128 x 256 grid until t = 3.0, which can be run as:

./pyro.py compressible bubble inputs.bubble

./pyro.py compressible_rk bubble inputs.bubble

./pyro.py compressible_fv4 bubble inputs.bubble

./pyro.py compressible_sdc bubble inputs.bubble

48 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.4. Bubble 49

pyro Documentation, Release 2.2

50 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.4. Bubble 51

pyro Documentation, Release 2.2

11.5 Rayleigh-Taylor

The Rayleigh-Taylor problem ran on a 64 x 192 grid until t = 3.0, which can be run as:

./pyro.py compressible rt inputs.rt

./pyro.py compressible_rk rt inputs.rt

./pyro.py compressible_fv4 rt inputs.rt

./pyro.py compressible_sdc rt inputs.rt

52 Chapter 11. Compressible solver comparisons

pyro Documentation, Release 2.2

11.5. Rayleigh-Taylor 53

pyro Documentation, Release 2.2

54 Chapter 11. Compressible solver comparisons

CHAPTER

TWELVE

MULTIGRID SOLVERS

pyro solves elliptic problems (like Laplace’s equation or Poisson’s equation) through multigrid. This accelerates the
convergence of simple relaxation by moving the solution down and up through a series of grids. Chapter 9 of the pdf
notes gives an introduction to solving elliptic equations, including multigrid.

There are three solvers:

• The core solver, provided in the class MG.CellCenterMG2d solves constant-coefficient Helmholtz problems of
the form (𝛼− 𝛽∇2)𝜑 = 𝑓

• The class variable_coeff_MG.VarCoeffCCMG2d solves variable coefficient Poisson problems of the form
∇ · (𝜂∇𝜑) = 𝑓 . This class inherits the core functionality from MG.CellCenterMG2d.

• The class general_MG.GeneralMG2d solves a general elliptic equation of the form𝛼𝜑+∇·(𝛽∇𝜑)+𝛾 ·∇𝜑 = 𝑓 .
This class inherits the core functionality from MG.CellCenterMG2d.

This solver is the only one to support inhomogeneous boundary conditions.

We simply use V-cycles in our implementation, and restrict ourselves to square grids with zoning a power of 2.

The multigrid solver is not controlled through pyro.py since there is no time-dependence in pure elliptic problems.
Instead, there are a few scripts in the multigrid/ subdirectory that demonstrate its use.

12.1 Examples

12.1.1 multigrid test

A basic multigrid test is run as (using a path relative to the root of the pyro2 repository):

./examples/multigrid/mg_test_simple.py

The mg_test_simple.py script solves a Poisson equation with a known analytic solution. This particular example
comes from the text A Multigrid Tutorial, 2nd Ed., by Briggs. The example is:

𝑢𝑥𝑥 + 𝑢𝑦𝑦 = −2
[︀
(1 − 6𝑥2)𝑦2(1 − 𝑦2) + (1 − 6𝑦2)𝑥2(1 − 𝑥2)

]︀
on [0, 1] × [0, 1] with 𝑢 = 0 on the boundary.

The solution to this is shown below.

55

http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf
http://bender.astro.sunysb.edu/hydro_by_example/CompHydroTutorial.pdf

pyro Documentation, Release 2.2

Since this has a known analytic solution:

𝑢(𝑥, 𝑦) = (𝑥2 − 𝑥4)(𝑦4 − 𝑦2)

We can assess the convergence of our solver by running at a variety of resolutions and computing the norm of the error
with respect to the analytic solution. This is shown below:

56 Chapter 12. Multigrid solvers

pyro Documentation, Release 2.2

The dotted line is 2nd order convergence, which we match perfectly.

The movie below shows the smoothing at each level to realize this solution:

You can run this example locally by running the mg_vis.py script:

./examples/multigrid/mg_vis.py

12.1.2 projection

Another example uses multigrid to extract the divergence free part of a velocity field. This is run as:

./examples/multigrid/project_periodic.py

Given a vector field, 𝑈 , we can decompose it into a divergence free part, 𝑈𝑑, and the gradient of a scalar, 𝜑:

𝑈 = 𝑈𝑑 + ∇𝜑

We can project out the divergence free part by taking the divergence, leading to an elliptic equation:

∇2𝜑 = ∇ · 𝑈

The project-periodic.py script starts with a divergence free velocity field, adds to it the gradient of a scalar, and
then projects it to recover the divergence free part. The error can found by comparing the original velocity field to the
recovered field. The results are shown below:

12.1. Examples 57

pyro Documentation, Release 2.2

Left is the original u velocity, middle is the modified field after adding the gradient of the scalar, and right is the
recovered field.

12.2 Exercises

12.2.1 Explorations

• Try doing just smoothing, no multigrid. Show that it still converges second order if you use enough iterations,
but that the amount of time needed to get a solution is much greater.

12.2.2 Extensions

• Implement inhomogeneous dirichlet boundary conditions

• Add a different bottom solver to the multigrid algorithm

• Make the multigrid solver work for non-square domains

58 Chapter 12. Multigrid solvers

CHAPTER

THIRTEEN

DIFFUSION

pyro solves the constant-conductivity diffusion equation:

𝜕𝜑

𝜕𝑡
= 𝑘∇2𝜑

This is done implicitly using multigrid, using the solver diffusion.

The diffusion equation is discretized using Crank-Nicolson differencing (this makes the diffusion operator time-
centered) and the implicit discretization forms a Helmholtz equation solved by the pyro multigrid class. The main
parameters that affect this solver are:

• section: [diffusion]

option value description
k 1.0 conductivity

• section: [driver]

option value description
cfl 0.8 diffusion CFL number

13.1 Examples

13.1.1 gaussian

The gaussian problem initializes a strongly peaked Gaussian centered in the domain. The analytic solution for this
shows that the profile remains a Gaussian, with a changing width and peak. This allows us to compare our solver to the
analytic solution. This is run as:

./pyro.py diffusion gaussian inputs.gaussian

59

pyro Documentation, Release 2.2

The above figure shows the scalar field after diffusing significantly from its initial strongly peaked state. We can compare
to the analytic solution by making radial profiles of the scalar. The plot below shows the numerical solution (red points)
overplotted on the analytic solution (solid curves) for several different times. The y-axis is restricted in range to bring
out the detail at later times.

60 Chapter 13. Diffusion

pyro Documentation, Release 2.2

13.2 Exercises

The best way to learn these methods is to play with them yourself. The exercises below are suggestions for explorations
and features to add to the advection solver.

13.2.1 Explorations

• Test the convergence of the solver by varying the resolution and comparing to the analytic solution.

• How does the solution error change as the CFL number is increased well above 1?

• Setup some other profiles and experiment with different boundary conditions.

13.2. Exercises 61

pyro Documentation, Release 2.2

13.2.2 Extensions

• Switch from Crank-Nicolson (2nd order in time) to backward’s Euler (1st order in time) and compare the solution
and convergence. This should only require changing the source term and coefficents used in setting up the
multigrid solve. It does not require changes to the multigrid solver itself.

• Implement a non-constant coefficient diffusion solver—note: this will require improving the multigrid solver.

62 Chapter 13. Diffusion

CHAPTER

FOURTEEN

INCOMPRESSIBLE HYDRODYNAMICS SOLVER

pyro’s incompressible solver solves:

𝜕𝑈

𝜕𝑡
+ 𝑈 · ∇𝑈 + ∇𝑝 = 0

∇ · 𝑈 = 0

The algorithm combines the Godunov/advection features used in the advection and compressible solver together with
multigrid to enforce the divergence constraint on the velocities.

Here we implement a cell-centered approximate projection method for solving the incompressible equations. At the
moment, only periodic BCs are supported.

The main parameters that affect this solver are:

• section: [driver]

option value description
cfl 0.8

• section: [incompressible]

option value description
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
proj_type 2 what are we projecting? 1 includes -Gp term in U*

• section: [particles]

option value description
do_particles 0
particle_generator grid

14.1 Examples

14.1.1 shear

The shear problem initializes a shear layer in a domain with doubly-periodic boundaries and looks at the development
of two vortices as the shear layer rolls up. This problem was explored in a number of papers, for example, Bell, Colella,
& Glaz (1989) and Martin & Colella (2000). This is run as:

63

pyro Documentation, Release 2.2

./pyro.py incompressible shear inputs.shear

The vorticity panel (lower left) is what is usually shown in papers. Note that the velocity divergence is not zero—this
is because we are using an approximate projection.

14.1.2 convergence

The convergence test initializes a simple velocity field on a periodic unit square with known analytic solution. By
evolving at a variety of resolutions and comparing to the analytic solution, we can measure the convergence rate of
the algorithm. The particular set of initial conditions is from Minion (1996). Limiting can be disabled by adding
incompressible.limiter=0 to the run command. The basic set of tests shown below are run as:

./pyro.py incompressible converge inputs.converge.32 vis.dovis=0

./pyro.py incompressible converge inputs.converge.64 vis.dovis=0

./pyro.py incompressible converge inputs.converge.128 vis.dovis=0

The error is measured by comparing with the analytic solution using the routine incomp_converge_error.py in
analysis/.

64 Chapter 14. Incompressible hydrodynamics solver

pyro Documentation, Release 2.2

The dashed line is second order convergence. We see almost second order behavior with the limiters enabled and
slightly better than second order with no limiting.

14.2 Exercises

14.2.1 Explorations

• Disable the MAC projection and run the converge problem—is the method still 2nd order?

• Disable all projections—does the solution still even try to preserve ∇ · 𝑈 = 0?

• Experiment with what is projected. Try projecting 𝑈𝑡 to see if that makes a difference.

14.2. Exercises 65

pyro Documentation, Release 2.2

14.2.2 Extensions

• Switch the final projection from a cell-centered approximate projection to a nodal projection. This will require
writing a new multigrid solver that operates on nodal data.

• Add viscosity to the system. This will require doing 2 parabolic solves (one for each velocity component). These
solves will look like the diffusion operation, and will update the provisional velocity field.

• Switch to a variable density system. This will require adding a mass continuity equation that is advected and
switching the projections to a variable-coeffient form (since now enters).

14.3 Going further

The incompressible algorithm presented here is a simplified version of the projection methods used in the Maestro low
Mach number hydrodynamics code. Maestro can do variable-density incompressible, anelastic, and low Mach number
stratified flows in stellar (and terrestrial) environments in close hydrostatic equilibrium.

66 Chapter 14. Incompressible hydrodynamics solver

http://amrex-astro.github.io/MAESTRO/
http://amrex-astro.github.io/MAESTRO/

CHAPTER

FIFTEEN

LOW MACH NUMBER HYDRODYNAMICS SOLVER

pyro’s low Mach hydrodynamics solver is designed for atmospheric flows. It captures the effects of stratification on a
fluid element by enforcing a divergence constraint on the velocity field. The governing equations are:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑈) = 0

𝜕𝑈

𝜕𝑡
+ 𝑈 · ∇𝑈 +

𝛽0
𝜌
∇

(︂
𝑝′

𝛽0

)︂
=
𝜌′

𝜌
𝑔

∇ · (𝛽0𝑈) = 0

with ∇𝑝0 = 𝜌0𝑔 and 𝛽0 = 𝑝
1/𝛾
0 .

As with the incompressible solver, we implement a cell-centered approximate projection method.

The main parameters that affect this solver are:

• section: [driver]

option value description
cfl 0.8

• section: [eos]

option value description
gamma 1.4 pres = rho ener (gamma - 1)

• section: [lm-atmosphere]

option value description
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
proj_type 2 what are we projecting? 1 includes -Gp term in U*
grav -2.0

67

pyro Documentation, Release 2.2

15.1 Examples

15.1.1 bubble

The bubble problem places a buoyant bubble in a stratified atmosphere and watches the development of the roll-up due
to shear as it rises. This is run as:

./pyro.py lm_atm bubble inputs.bubble

68 Chapter 15. Low Mach number hydrodynamics solver

CHAPTER

SIXTEEN

SHALLOW WATER SOLVER

The (augmented) shallow water equations take the form:

𝜕ℎ

𝜕𝑡
+ ∇ · (ℎ𝑈) = 0

𝜕(ℎ𝑈)

𝜕𝑡
+ ∇ · (ℎ𝑈𝑈) +

1

2
𝑔∇ℎ2 = 0

𝜕(ℎ𝜓)

𝜕𝑡
+ ∇ · (ℎ𝑈𝜓) = 0

with ℎ is the fluid height, 𝑈 the fluid velocity, 𝑔 the gravitational acceleration and 𝜓 = 𝜓(𝑥, 𝑡) represents some passive
scalar.

The implementation here has flattening at shocks and a choice of Riemann solvers.

The main parameters that affect this solver are:

• section: [driver]

option value description
cfl 0.8

• section: [particles]

option value description
do_particles 0
particle_generator grid

• section: [swe]

option value description
use_flattening 0 apply flattening at shocks (1)
cvisc 0.1 artifical viscosity coefficient
limiter 2 limiter (0 = none, 1 = 2nd order, 2 = 4th order)
grav 1.0 gravitational acceleration (in y-direction)
riemann Roe HLLC or Roe

69

pyro Documentation, Release 2.2

16.1 Example problems

16.1.1 dam

The dam break problem is a standard hydrodynamics problem, analagous to the Sod shock tube problem in compressible
hydrodynamics. It considers a one-multidimensional problem of two regions of fluid at different heights, initially
separated by a dam. The problem then models the evolution of the system when this dam is removed. As for the
Sod problem, there exists an exact solution for the dam break probem, so we can check our solution against the exact
solutions. See Toro’s shallow water equations book for details on this problem and the exact Riemann solver.

Because it is one-dimensional, we run it in narrow domains in the x- or y-directions. It can be run as:

./pyro.py swe dam inputs.dam.x

./pyro.py swe dam inputs.dam.y

A simple script, dam_compare.py in analysis/ will read a pyro output file and plot the solution over the exact dam
break solution (as given by Stoker (1958) and Wu, Huang & Zheng (1999)). Below we see the result for a dam break
run with 128 points in the x-direction, and run until t = 0.3 s.

70 Chapter 16. Shallow water solver

https://doi.org/10.1063/1.3062689
https://doi.org/10.1061/(ASCE)0733-9429(1999)125:11(1210)

pyro Documentation, Release 2.2

We see excellent agreement for all quantities. The shock wave is very steep, as expected. For this problem, the Roe-fix
solver performs slightly better than the HLLC solver, with less smearing at the shock and head/tail of the rarefaction.

16.1.2 quad

The quad problem sets up different states in four regions of the domain and watches the complex interfaces that de-
velop as shocks interact. This problem has appeared in several places (and a detailed investigation is online by Pawel
Artymowicz). It is run as:

16.1. Example problems 71

http://planets.utsc.utoronto.ca/~pawel/Riemann.hydro.html

pyro Documentation, Release 2.2

./pyro.py swe quad inputs.quad

16.1.3 kh

The Kelvin-Helmholtz problem models three layers of fluid: two at the top and bottom of the domain travelling in one
direction, one in the central part of the domain travelling in the opposite direction. At the interface of the layers, shearing
produces the characteristic Kelvin-Helmholtz instabilities, just as is seen in the standard compressible problem. It is
run as:

./pyro.py swe kh inputs.kh

16.2 Exercises

16.2.1 Explorations

• There are multiple Riemann solvers in the swe algorithm. Run the same problem with the different Riemann
solvers and look at the differences. Toro’s shallow water text is a good book to help understand what is happening.

• Run the problems with and without limiting—do you notice any overshoots?

16.2.2 Extensions

• Limit on the characteristic variables instead of the primitive variables. What changes do you see? (the notes
show how to implement this change.)

• Add a source term to model a non-flat sea floor (bathymetry).

72 Chapter 16. Shallow water solver

CHAPTER

SEVENTEEN

PARTICLES

A solver for modelling particles.

17.1 particles.particles implementation and use

We import the basic particles module functionality as:

import particles.particles as particles

The particles solver is made up of two classes:

• Particle, which holds the data about a single particle (its position and velocity);

• Particles, which holds the data about a collection of particles.

The particles are stored as a dictionary, and their positions are updated based on the velocity on the grid. The keys are
tuples of the particles’ initial positions (however the values of the keys themselves are never used in the module, so this
could be altered using e.g. a custom particle_generator function without otherwise affecting the behaviour of the
module).

The particles can be initialized in a number of ways:

• randomly_generate_particles, which randomly generates n_particles within the domain.

• grid_generate_particles, which will generate approximately n_particles equally spaced in the x-
direction and y-direction (note that it uses the same number of particles in each direction, so the spacing will be
different in each direction if the domain is not square). The number of particles will be increased/decreased in
order to fill the whole domain.

• array_generate_particles, which generates particles based on array of particle positions passed to the con-
structor.

• The user can define their own particle_generator function and pass this into the Particles constructor.
This function takes the number of particles to be generated and returns a dictionary of Particle objects.

We can turn on/off the particles solver using the following runtime paramters:

[particles]
do_particlesdo we want to model particles? (0=no, 1=yes)
n_particlesnumber of particles to be modelled
particle_generatorhow do we initialize the particles? “random” randomly generates particles throughout the domain, “grid”

generates equally spaced particles, “array” generates particles at positions given in an array passed to the
constructor. This option can be overridden by passing a custom generator function to the Particles
constructor.

73

pyro Documentation, Release 2.2

Using these runtime parameters, we can initialize particles in a problem using the following code in the solver’s
Simulation.initialize function:

if self.rp.get_param("particles.do_particles") == 1:
n_particles = self.rp.get_param("particles.n_particles")
particle_generator = self.rp.get_param("particles.particle_generator")
self.particles = particles.Particles(self.cc_data, bc, n_particles, particle_

→˓generator)

The particles can then be advanced by inserting the following code after the update of the other variables in the solver’s
Simulation.evolve function:

if self.particles is not None:
self.particles.update_particles(self.dt)

This will both update the positions of the particles and enforce the boundary conditions.

For some problems (e.g. advection), the x- and y- velocities must also be passed in as arguments to this function as
they cannot be accessed using the standard get_var("velocity") command. In this case, we would instead use

if self.particles is not None:
self.particles.update_particles(self.dt, u, v)

17.2 Plotting particles

Given the Particles object particles, we can plot the particles by getting their positions using

particle_positions = particles.get_positions()

In order to track the movement of particles over time, it’s useful to ‘dye’ the particles based on their initial positions.
Assuming that the keys of the particles dictionary were set as the particles’ initial positions, this can be done by calling

colors = particles.get_init_positions()

For example, if we color the particles from white to black based on their initial x-position, we can plot them on the
figure axis ax using the following code:

particle_positions = particles.get_positions()

dye particles based on initial x-position
colors = particles.get_init_positions()[:, 0]

plot particles
ax.scatter(particle_positions[:, 0],

particle_positions[:, 1], s=5, c=colors, alpha=0.8, cmap="Greys")

ax.set_xlim([myg.xmin, myg.xmax])
ax.set_ylim([myg.ymin, myg.ymax])

Applying this to the Kelvin-Helmholtz problem with the compressible solver, we can produce a plot such as the one
below, where the particles have been plotted on top of the fluid density.

74 Chapter 17. Particles

pyro Documentation, Release 2.2

17.2. Plotting particles 75

pyro Documentation, Release 2.2

76 Chapter 17. Particles

CHAPTER

EIGHTEEN

ANALYSIS ROUTINES

In addition to the main pyro program, there are many analysis tools that we describe here. Note: some problems write
a report at the end of the simulation specifying the analysis routines that can be used with their data.

• compare.py: this takes two simulation output files as input and compares zone-by-zone for exact agreement.
This is used as part of the regression testing.

usage: ./compare.py file1 file2

• plot.py: this takes an output file as input and plots the data using the solver’s dovis method. It deduces the
solver from the attributes stored in the HDF5 file.

usage: ./plot.py file

• analysis/

– convergence.py: this compares two files with different resolutions (one a factor of 2 finer than the other).
It coarsens the finer data and then computes the norm of the difference. This is used to test the convergence
of solvers.

– dam_compare.py: this takes an output file from the shallow water dam break problem and plots a slice
through the domain together with the analytic solution (calculated in the script).

usage: ./dam_compare.py file

– gauss_diffusion_compare.py: this is for the diffusion solver’s Gaussian diffusion problem. It takes a
sequence of output files as arguments, computes the angle-average, and the plots the resulting points over
the analytic solution for comparison with the exact result.

usage: ./gauss_diffusion_compare.py file*

– incomp_converge_error.py: this is for the incompressible solver’s converge problem. This takes a
single output file as input and compares the velocity field to the analytic solution, reporting the L2 norm of
the error.

usage: ./incomp_converge_error.py file

– plotvar.py: this takes a single output file and a variable name and plots the data for that variable.

usage: ./plotvar.py file variable

– sedov_compare.py: this takes an output file from the compressible Sedov problem, computes
the angle-average profile of the solution and plots it together with the analytic data (read in from
cylindrical-sedov.out).

usage: ./sedov_compare.py file

– smooth_error.py: this takes an output file from the advection solver’s smooth problem and compares to
the analytic solution, outputing the L2 norm of the error.

usage: ./smooth_error.py file

77

pyro Documentation, Release 2.2

– sod_compare.py: this takes an output file from the compressible Sod problem and plots a slice through
the domain over the analytic solution (read in from sod-exact.out).

usage: ./sod_compare.py file

78 Chapter 18. Analysis routines

CHAPTER

NINETEEN

TESTING

There are two types of testing implemented in pyro: unit tests and regression tests. Both of these are driven by the
test.py script in the root directory.

19.1 Unit tests

pyro implements unit tests using py.test. These can be run via:

./test.py -u

19.2 Regression tests

The main driver, pyro.py has the ability to create benchmarks and compare output to stored benchmarks at the end of
a simulation. Benchmark output is stored in each solver’s tests/ directory. When testing, we compare zone-by-zone
for each variable to see if we agree exactly. If there is any disagreement, this means that we’ve made a change to the
code that we need to understand (if may be a bug or may be a fix or optimization).

We can compare to the stored benchmarks simply by running:

./test.py

Note: When running on a new machine, it is possible that roundoff-level differences may mean that we do not pass
the regression tests. In this case, one would need to create a new set of benchmarks for that machine and use those for
future tests.

79

pyro Documentation, Release 2.2

80 Chapter 19. Testing

CHAPTER

TWENTY

CONTRIBUTING AND GETTING HELP

20.1 Contributing

Contributions are welcomed from anyone, including posting issues or submitting pull requests to the pyro github.

Users who make significant contributions will be listed as developers in the pyro acknowledgements and be included
in any future code papers.

20.2 Issues

Creating an issue on github is a good way to request new features, file a bug report, or notify us of any difficulties that
arise using pyro.

To request support using pyro, please create an issue on the pyro github and the developers will be happy to assist you.

If you are reporting a bug, please indicate any information necessary to reproduce the bug including your version of
python.

20.3 Pull Requests

Any contributions that have the potential to change answers should be done via pull requests. A pull request should be
generated from your fork of pyro and target the main branch.

The unit and regression tests will run automatically once the PR is submitted, and then one of the pyro developers will
review the PR and if needed, suggest modifications prior to merging the PR.

If there are a number of small commits making up the PR, we may wish to squash commits upon merge to have a clean
history. Please ensure that your PR title and first post are descriptive, since these will be used for a squashed commit
message.

81

https://github.com/python-hydro/pyro2

pyro Documentation, Release 2.2

20.4 Discussions

We us github discussions: https://github.com/python-hydro/pyro2/discussions for support. You are encouraged to post
in the discussions to ask questions.

82 Chapter 20. Contributing and getting help

https://github.com/python-hydro/pyro2/discussions

CHAPTER

TWENTYONE

ACKNOWLEDGMENTS

Pyro developed by (in alphabetical order):

• Alice Harpole

• Ian Hawke

• Michael Zingale

You are free to use this code and the accompanying notes in your classes. Please credit “pyro development team” for
the code, and please send a note to the pyro-help e-mail list describing how you use it, so we can keep track of it (and
help justify the development effort).

If you use pyro in a publication, please cite it using this bibtex citation:

@article{pyro,
doi = {10.21105/joss.01265},
url = {https://doi.org/10.21105/joss.01265},
year = {2019},
publisher = {The Open Journal},
volume = {4},
number = {34},
pages = {1265},
author = {Alice Harpole and Michael Zingale and Ian Hawke and Taher Chegini},
title = {pyro: a framework for hydrodynamics explorations and prototyping},
journal = {Journal of Open Source Software}

}

pyro benefited from numerous useful discussions with Ann Almgren, John Bell, and Andy Nonaka.

83

pyro Documentation, Release 2.2

84 Chapter 21. Acknowledgments

CHAPTER

TWENTYTWO

HISTORY

The original pyro code was written in 2003-4 to help developmer Zingale understand these methods for himself. It was
originally written using the Numeric array package and handwritten C extensions for the compute-intensive kernels.
It was ported to numarray when that replaced Numeric, and continued to use C extensions. This version “pyro2” was
resurrected beginning in 2012 and rewritten for numpy using f2py, and brought up to date. Most recently we’ve dropped
f2py and are using numba for the compute-intensive kernels.

85

pyro Documentation, Release 2.2

86 Chapter 22. History

CHAPTER

TWENTYTHREE

PYRO2

23.1 advection package

23.1.1 Subpackages

advection.problems package

Submodules

advection.problems.smooth module

advection.problems.test module

advection.problems.tophat module

23.1.2 Submodules

23.1.3 advection.advective_fluxes module

23.1.4 advection.simulation module

23.2 advection_fv4 package

23.2.1 Subpackages

advection_fv4.problems package

Submodules

87

pyro Documentation, Release 2.2

advection_fv4.problems.smooth module

23.2.2 Submodules

23.2.3 advection_fv4.fluxes module

23.2.4 advection_fv4.interface module

23.2.5 advection_fv4.simulation module

23.3 advection_nonuniform package

23.3.1 Subpackages

advection_nonuniform.problems package

Submodules

advection_nonuniform.problems.slotted module

88 Chapter 23. pyro2

pyro Documentation, Release 2.2

advection_nonuniform.problems.test module

23.3.2 Submodules

23.3.3 advection_nonuniform.advective_fluxes module

23.3.4 advection_nonuniform.simulation module

23.4 advection_rk package

23.4.1 Submodules

23.4.2 advection_rk.fluxes module

23.4.3 advection_rk.simulation module

23.5 advection_weno package

23.5.1 Submodules

23.5.2 advection_weno.fluxes module

23.5.3 advection_weno.simulation module

23.6 compare module

23.7 compressible package

23.7.1 Subpackages

compressible.problems package

Submodules

compressible.problems.acoustic_pulse module

compressible.problems.advect module

compressible.problems.bubble module

compressible.problems.gresho module

compressible.problems.hse module

23.4. advection_rk package 89

pyro Documentation, Release 2.2

compressible.problems.kh module

compressible.problems.logo module

compressible.problems.quad module

compressible.problems.ramp module

compressible.problems.rt module

compressible.problems.rt2 module

compressible.problems.sedov module

compressible.problems.sod module

compressible.problems.test module

23.7.2 Submodules

23.7.3 compressible.BC module

23.7.4 compressible.derives module

23.7.5 compressible.eos module

23.7.6 compressible.interface module

23.7.7 compressible.simulation module

23.7.8 compressible.unsplit_fluxes module

23.8 compressible_fv4 package

23.8.1 Subpackages

compressible_fv4.problems package

Submodules

90 Chapter 23. pyro2

pyro Documentation, Release 2.2

compressible_fv4.problems.acoustic_pulse module

23.8.2 Submodules

23.8.3 compressible_fv4.fluxes module

23.8.4 compressible_fv4.simulation module

23.9 compressible_react package

23.9.1 Subpackages

compressible_react.problems package

Submodules

compressible_react.problems.flame module

compressible_react.problems.rt module

23.9.2 Submodules

23.9.3 compressible_react.simulation module

23.10 compressible_rk package

23.10.1 Submodules

23.10.2 compressible_rk.fluxes module

23.10.3 compressible_rk.simulation module

23.11 compressible_sdc package

23.11.1 Submodules

23.11.2 compressible_sdc.simulation module

23.12 diffusion package

23.12.1 Subpackages

diffusion.problems package

Submodules

23.9. compressible_react package 91

pyro Documentation, Release 2.2

diffusion.problems.gaussian module

diffusion.problems.test module

23.12.2 Submodules

23.12.3 diffusion.simulation module

23.13 examples package

23.13.1 Subpackages

examples.multigrid package

Submodules

examples.multigrid.mg_test_general_alphabeta_only module

examples.multigrid.mg_test_general_beta_only module

examples.multigrid.mg_test_general_constant module

examples.multigrid.mg_test_general_dirichlet module

examples.multigrid.mg_test_general_inhomogeneous module

examples.multigrid.mg_test_simple module

examples.multigrid.mg_test_vc_constant module

examples.multigrid.mg_test_vc_dirichlet module

examples.multigrid.mg_test_vc_periodic module

examples.multigrid.mg_vis module

examples.multigrid.project_periodic module

examples.multigrid.prolong_restrict_demo module

23.14 incompressible package

23.14.1 Subpackages

incompressible.problems package

92 Chapter 23. pyro2

pyro Documentation, Release 2.2

Submodules

incompressible.problems.converge module

incompressible.problems.shear module

23.14.2 Submodules

23.14.3 incompressible.incomp_interface module

23.14.4 incompressible.simulation module

23.15 lm_atm package

23.15.1 Subpackages

lm_atm.problems package

Submodules

lm_atm.problems.bubble module

23.15. lm_atm package 93

pyro Documentation, Release 2.2

lm_atm.problems.gresho module

23.15.2 Submodules

23.15.3 lm_atm.LM_atm_interface module

23.15.4 lm_atm.simulation module

23.16 mesh package

23.16.1 Submodules

23.16.2 mesh.array_indexer module

23.16.3 mesh.boundary module

23.16.4 mesh.fv module

23.16.5 mesh.integration module

23.16.6 mesh.patch module

23.16.7 mesh.reconstruction module

23.17 multigrid package

23.17.1 Submodules

23.17.2 multigrid.MG module

23.17.3 multigrid.edge_coeffs module

23.17.4 multigrid.general_MG module

23.17.5 multigrid.variable_coeff_MG module

23.18 particles package

23.18.1 Submodules

23.18.2 particles.particles module

23.19 plot module

23.20 pyro module

23.21 simulation_null module

23.22 swe package

23.22.1 Subpackages

94 Chapter 23. pyro2

pyro Documentation, Release 2.2

swe.problems package

Submodules

swe.problems.acoustic_pulse module

swe.problems.advect module

swe.problems.dam module

swe.problems.kh module

swe.problems.logo module

swe.problems.quad module

swe.problems.test module

23.22.2 Submodules

23.22.3 swe.derives module

23.22.4 swe.interface module

23.22.5 swe.simulation module

23.22.6 swe.unsplit_fluxes module

23.23 util package

23.23.1 Submodules

23.23.2 util.io_pyro module

23.23.3 util.msg module

23.23.4 util.plot_tools module

23.23.5 util.profile_pyro module

23.23.6 util.runparams module

23.23. util package 95

pyro Documentation, Release 2.2

96 Chapter 23. pyro2

CHAPTER

TWENTYFOUR

REFERENCES

97

pyro Documentation, Release 2.2

98 Chapter 24. References

CHAPTER

TWENTYFIVE

INDICES AND TABLES

• genindex

• modindex

• search

99

pyro Documentation, Release 2.2

100 Chapter 25. Indices and tables

BIBLIOGRAPHY

[Zal79] Steven T Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of
Computational Physics, 31(3):335 – 362, 1979. URL: http://www.sciencedirect.com/science/article/pii/
0021999179900512, doi:https://doi.org/10.1016/0021-9991(79)90051-2.

[Colella90] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computa-
tional Physics, 87:171–200, March 1990. doi:10.1016/0021-9991(90)90233-Q.

[McCorquodaleColella11] P. McCorquodale and P. Colella. A high-order finite-volume method for conservation laws
on locally refined grids. Communication in Applied Mathematics and Computational Science, 6(1):1–25,
2011.

101

http://www.sciencedirect.com/science/article/pii/0021999179900512
http://www.sciencedirect.com/science/article/pii/0021999179900512
https://doi.org/https://doi.org/10.1016/0021-9991(79)90051-2
https://doi.org/10.1016/0021-9991(90)90233-Q

pyro Documentation, Release 2.2

102 Bibliography

PYTHON MODULE INDEX

e
examples, 92
examples.multigrid, 92

103

pyro Documentation, Release 2.2

104 Python Module Index

INDEX

E
examples

module, 92
examples.multigrid
module, 92

M
module
examples, 92
examples.multigrid, 92

105

	Introduction to pyro
	Setting up pyro
	Quick test

	Notes on the numerical methods
	Design ideas
	Directory structure
	Numba
	Main driver

	Running
	Commandline
	Pyro class
	Runtime options

	Working with output
	Utilities
	Reading and plotting manually

	Adding a problem
	Mesh overview
	mesh.patch implementation and use
	Jupyter notebook
	Tests

	Advection solvers
	advection solver
	advection_fv4 solver
	advection_nonuniform solver
	advection_rk solver
	advection_weno solver
	General ideas
	Examples
	smooth
	tophat

	Exercises
	Explorations
	Extensions

	Compressible hydrodynamics solvers
	compressible solver
	compressible_rk solver
	compressible_fv4 solver
	compressible_sdc solver
	Example problems
	Sod
	Sedov
	quad
	rt
	bubble

	Exercises
	Explorations
	Extensions

	Going further

	Compressible solver comparisons
	Kelvin-Helmholtz
	Sedov
	Quad
	Bubble
	Rayleigh-Taylor

	Multigrid solvers
	Examples
	multigrid test
	projection

	Exercises
	Explorations
	Extensions

	Diffusion
	Examples
	gaussian

	Exercises
	Explorations
	Extensions

	Incompressible hydrodynamics solver
	Examples
	shear
	convergence

	Exercises
	Explorations
	Extensions

	Going further

	Low Mach number hydrodynamics solver
	Examples
	bubble

	Shallow water solver
	Example problems
	dam
	quad
	kh

	Exercises
	Explorations
	Extensions

	Particles
	particles.particles implementation and use
	Plotting particles

	Analysis routines
	Testing
	Unit tests
	Regression tests

	Contributing and getting help
	Contributing
	Issues
	Pull Requests
	Discussions

	Acknowledgments
	History
	pyro2
	advection package
	Subpackages
	advection.problems package
	Submodules
	advection.problems.smooth module
	advection.problems.test module
	advection.problems.tophat module

	Submodules
	advection.advective_fluxes module
	advection.simulation module

	advection_fv4 package
	Subpackages
	advection_fv4.problems package
	Submodules
	advection_fv4.problems.smooth module

	Submodules
	advection_fv4.fluxes module
	advection_fv4.interface module
	advection_fv4.simulation module

	advection_nonuniform package
	Subpackages
	advection_nonuniform.problems package
	Submodules
	advection_nonuniform.problems.slotted module
	advection_nonuniform.problems.test module

	Submodules
	advection_nonuniform.advective_fluxes module
	advection_nonuniform.simulation module

	advection_rk package
	Submodules
	advection_rk.fluxes module
	advection_rk.simulation module

	advection_weno package
	Submodules
	advection_weno.fluxes module
	advection_weno.simulation module

	compare module
	compressible package
	Subpackages
	compressible.problems package
	Submodules
	compressible.problems.acoustic_pulse module
	compressible.problems.advect module
	compressible.problems.bubble module
	compressible.problems.gresho module
	compressible.problems.hse module
	compressible.problems.kh module
	compressible.problems.logo module
	compressible.problems.quad module
	compressible.problems.ramp module
	compressible.problems.rt module
	compressible.problems.rt2 module
	compressible.problems.sedov module
	compressible.problems.sod module
	compressible.problems.test module

	Submodules
	compressible.BC module
	compressible.derives module
	compressible.eos module
	compressible.interface module
	compressible.simulation module
	compressible.unsplit_fluxes module

	compressible_fv4 package
	Subpackages
	compressible_fv4.problems package
	Submodules
	compressible_fv4.problems.acoustic_pulse module

	Submodules
	compressible_fv4.fluxes module
	compressible_fv4.simulation module

	compressible_react package
	Subpackages
	compressible_react.problems package
	Submodules
	compressible_react.problems.flame module
	compressible_react.problems.rt module

	Submodules
	compressible_react.simulation module

	compressible_rk package
	Submodules
	compressible_rk.fluxes module
	compressible_rk.simulation module

	compressible_sdc package
	Submodules
	compressible_sdc.simulation module

	diffusion package
	Subpackages
	diffusion.problems package
	Submodules
	diffusion.problems.gaussian module
	diffusion.problems.test module

	Submodules
	diffusion.simulation module

	examples package
	Subpackages
	examples.multigrid package
	Submodules
	examples.multigrid.mg_test_general_alphabeta_only module
	examples.multigrid.mg_test_general_beta_only module
	examples.multigrid.mg_test_general_constant module
	examples.multigrid.mg_test_general_dirichlet module
	examples.multigrid.mg_test_general_inhomogeneous module
	examples.multigrid.mg_test_simple module
	examples.multigrid.mg_test_vc_constant module
	examples.multigrid.mg_test_vc_dirichlet module
	examples.multigrid.mg_test_vc_periodic module
	examples.multigrid.mg_vis module
	examples.multigrid.project_periodic module
	examples.multigrid.prolong_restrict_demo module

	incompressible package
	Subpackages
	incompressible.problems package
	Submodules
	incompressible.problems.converge module
	incompressible.problems.shear module

	Submodules
	incompressible.incomp_interface module
	incompressible.simulation module

	lm_atm package
	Subpackages
	lm_atm.problems package
	Submodules
	lm_atm.problems.bubble module
	lm_atm.problems.gresho module

	Submodules
	lm_atm.LM_atm_interface module
	lm_atm.simulation module

	mesh package
	Submodules
	mesh.array_indexer module
	mesh.boundary module
	mesh.fv module
	mesh.integration module
	mesh.patch module
	mesh.reconstruction module

	multigrid package
	Submodules
	multigrid.MG module
	multigrid.edge_coeffs module
	multigrid.general_MG module
	multigrid.variable_coeff_MG module

	particles package
	Submodules
	particles.particles module

	plot module
	pyro module
	simulation_null module
	swe package
	Subpackages
	swe.problems package
	Submodules
	swe.problems.acoustic_pulse module
	swe.problems.advect module
	swe.problems.dam module
	swe.problems.kh module
	swe.problems.logo module
	swe.problems.quad module
	swe.problems.test module

	Submodules
	swe.derives module
	swe.interface module
	swe.simulation module
	swe.unsplit_fluxes module

	util package
	Submodules
	util.io_pyro module
	util.msg module
	util.plot_tools module
	util.profile_pyro module
	util.runparams module

	References
	Indices and tables
	Bibliography
	Python Module Index
	Index

