Source code for compressible.simulation

from __future__ import print_function

import importlib

import numpy as np
import matplotlib.pyplot as plt

import compressible.BC as BC
import compressible.eos as eos
import compressible.derives as derives
import compressible.unsplit_fluxes as flx
import mesh.boundary as bnd
from simulation_null import NullSimulation, grid_setup, bc_setup
import util.plot_tools as plot_tools
import particles.particles as particles


[docs]class Variables(object): """ a container class for easy access to the different compressible variable by an integer key """ def __init__(self, myd): self.nvar = len(myd.names) # conserved variables -- we set these when we initialize for # they match the CellCenterData2d object self.idens = myd.names.index("density") self.ixmom = myd.names.index("x-momentum") self.iymom = myd.names.index("y-momentum") self.iener = myd.names.index("energy") # if there are any additional variable, we treat them as # passively advected scalars self.naux = self.nvar - 4 if self.naux > 0: self.irhox = 4 else: self.irhox = -1 # primitive variables self.nq = 4 + self.naux self.irho = 0 self.iu = 1 self.iv = 2 self.ip = 3 if self.naux > 0: self.ix = 4 # advected scalar else: self.ix = -1
[docs]def cons_to_prim(U, gamma, ivars, myg): """ convert an input vector of conserved variables to primitive variables """ q = myg.scratch_array(nvar=ivars.nq) q[:, :, ivars.irho] = U[:, :, ivars.idens] q[:, :, ivars.iu] = U[:, :, ivars.ixmom]/U[:, :, ivars.idens] q[:, :, ivars.iv] = U[:, :, ivars.iymom]/U[:, :, ivars.idens] e = (U[:, :, ivars.iener] - 0.5*q[:, :, ivars.irho]*(q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2))/q[:, :, ivars.irho] q[:, :, ivars.ip] = eos.pres(gamma, q[:, :, ivars.irho], e) if ivars.naux > 0: for nq, nu in zip(range(ivars.ix, ivars.ix+ivars.naux), range(ivars.irhox, ivars.irhox+ivars.naux)): q[:, :, nq] = U[:, :, nu]/q[:, :, ivars.irho] return q
[docs]def prim_to_cons(q, gamma, ivars, myg): """ convert an input vector of primitive variables to conserved variables """ U = myg.scratch_array(nvar=ivars.nvar) U[:, :, ivars.idens] = q[:, :, ivars.irho] U[:, :, ivars.ixmom] = q[:, :, ivars.iu]*U[:, :, ivars.idens] U[:, :, ivars.iymom] = q[:, :, ivars.iv]*U[:, :, ivars.idens] rhoe = eos.rhoe(gamma, q[:, :, ivars.ip]) U[:, :, ivars.iener] = rhoe + 0.5*q[:, :, ivars.irho]*(q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2) if ivars.naux > 0: for nq, nu in zip(range(ivars.ix, ivars.ix+ivars.naux), range(ivars.irhox, ivars.irhox+ivars.naux)): U[:, :, nu] = q[:, :, nq]*q[:, :, ivars.irho] return U
[docs]class Simulation(NullSimulation): """The main simulation class for the corner transport upwind compressible hydrodynamics solver """
[docs] def initialize(self, extra_vars=None, ng=4): """ Initialize the grid and variables for compressible flow and set the initial conditions for the chosen problem. """ my_grid = grid_setup(self.rp, ng=ng) my_data = self.data_class(my_grid) # define solver specific boundary condition routines bnd.define_bc("hse", BC.user, is_solid=False) bnd.define_bc("ramp", BC.user, is_solid=False) # for double mach reflection problem bc, bc_xodd, bc_yodd = bc_setup(self.rp) # are we dealing with solid boundaries? we'll use these for # the Riemann solver self.solid = bnd.bc_is_solid(bc) # density and energy my_data.register_var("density", bc) my_data.register_var("energy", bc) my_data.register_var("x-momentum", bc_xodd) my_data.register_var("y-momentum", bc_yodd) # any extras? if extra_vars is not None: for v in extra_vars: my_data.register_var(v, bc) # store the EOS gamma as an auxillary quantity so we can have a # self-contained object stored in output files to make plots. # store grav because we'll need that in some BCs my_data.set_aux("gamma", self.rp.get_param("eos.gamma")) my_data.set_aux("grav", self.rp.get_param("compressible.grav")) my_data.create() self.cc_data = my_data if self.rp.get_param("particles.do_particles") == 1: self.particles = particles.Particles(self.cc_data, bc, self.rp) # some auxillary data that we'll need to fill GC in, but isn't # really part of the main solution aux_data = self.data_class(my_grid) aux_data.register_var("ymom_src", bc_yodd) aux_data.register_var("E_src", bc) aux_data.create() self.aux_data = aux_data self.ivars = Variables(my_data) # derived variables self.cc_data.add_derived(derives.derive_primitives) # initial conditions for the problem problem = importlib.import_module("{}.problems.{}".format( self.solver_name, self.problem_name)) problem.init_data(self.cc_data, self.rp) if self.verbose > 0: print(my_data)
[docs] def method_compute_timestep(self): """ The timestep function computes the advective timestep (CFL) constraint. The CFL constraint says that information cannot propagate further than one zone per timestep. We use the driver.cfl parameter to control what fraction of the CFL step we actually take. """ cfl = self.rp.get_param("driver.cfl") # get the variables we need u, v, cs = self.cc_data.get_var(["velocity", "soundspeed"]) # the timestep is min(dx/(|u| + cs), dy/(|v| + cs)) xtmp = self.cc_data.grid.dx/(abs(u) + cs) ytmp = self.cc_data.grid.dy/(abs(v) + cs) self.dt = cfl*float(min(xtmp.min(), ytmp.min()))
[docs] def evolve(self): """ Evolve the equations of compressible hydrodynamics through a timestep dt. """ tm_evolve = self.tc.timer("evolve") tm_evolve.begin() dens = self.cc_data.get_var("density") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") grav = self.rp.get_param("compressible.grav") myg = self.cc_data.grid Flux_x, Flux_y = flx.unsplit_fluxes(self.cc_data, self.aux_data, self.rp, self.ivars, self.solid, self.tc, self.dt) old_dens = dens.copy() old_ymom = ymom.copy() # conservative update dtdx = self.dt/myg.dx dtdy = self.dt/myg.dy for n in range(self.ivars.nvar): var = self.cc_data.get_var_by_index(n) var.v()[:, :] += \ dtdx*(Flux_x.v(n=n) - Flux_x.ip(1, n=n)) + \ dtdy*(Flux_y.v(n=n) - Flux_y.jp(1, n=n)) # gravitational source terms ymom[:, :] += 0.5*self.dt*(dens[:, :] + old_dens[:, :])*grav ener[:, :] += 0.5*self.dt*(ymom[:, :] + old_ymom[:, :])*grav if self.particles is not None: self.particles.update_particles(self.dt) # increment the time self.cc_data.t += self.dt self.n += 1 tm_evolve.end()
[docs] def dovis(self): """ Do runtime visualization. """ plt.clf() plt.rc("font", size=10) # we do this even though ivars is in self, so this works when # we are plotting from a file ivars = Variables(self.cc_data) # access gamma from the cc_data object so we can use dovis # outside of a running simulation. gamma = self.cc_data.get_aux("gamma") q = cons_to_prim(self.cc_data.data, gamma, ivars, self.cc_data.grid) rho = q[:, :, ivars.irho] u = q[:, :, ivars.iu] v = q[:, :, ivars.iv] p = q[:, :, ivars.ip] e = eos.rhoe(gamma, p)/rho magvel = np.sqrt(u**2 + v**2) myg = self.cc_data.grid fields = [rho, magvel, p, e] field_names = [r"$\rho$", r"U", "p", "e"] _, axes, cbar_title = plot_tools.setup_axes(myg, len(fields)) for n, ax in enumerate(axes): v = fields[n] img = ax.imshow(np.transpose(v.v()), interpolation="nearest", origin="lower", extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax], cmap=self.cm) ax.set_xlabel("x") ax.set_ylabel("y") # needed for PDF rendering cb = axes.cbar_axes[n].colorbar(img) cb.solids.set_rasterized(True) cb.solids.set_edgecolor("face") if cbar_title: cb.ax.set_title(field_names[n]) else: ax.set_title(field_names[n]) if self.particles is not None: ax = axes[0] particle_positions = self.particles.get_positions() # dye particles colors = self.particles.get_init_positions()[:, 0] # plot particles ax.scatter(particle_positions[:, 0], particle_positions[:, 1], s=5, c=colors, alpha=0.8, cmap="Greys") ax.set_xlim([myg.xmin, myg.xmax]) ax.set_ylim([myg.ymin, myg.ymax]) plt.figtext(0.05, 0.0125, "t = {:10.5g}".format(self.cc_data.t)) plt.pause(0.001) plt.draw()
[docs] def write_extras(self, f): """ Output simulation-specific data to the h5py file f """ # make note of the custom BC gb = f.create_group("BC") # the value here is the value of "is_solid" gb.create_dataset("hse", data=False)